Received: 22 April 2009

Revised: 16 July 2009

(www.interscience.com) DOI 10.1002/psc.1175

Published online in Wiley Interscience: 29 September 2009

Journal of PeptideScience

Synthesis and receptor binding of opioid peptide analogues containing β^3 -homo-amino acids

Dominika Wilczyńska,^a Piotr Kosson,^b Maria Kwasiborska,^c Andrzej Ejchart^c and Aleksandra Olma^a*

 β -Amino acids containing hybrid peptides and β -peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the μ - and δ -opioid receptors of β -peptides, analogues of Leu-enkephalin, deltorphin I, dermorphin and α , β -hybrides, analogues of deltorphin I. Substitution of α -amino acid residues with β^3 -homo-amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β^3 h-D-Ala in position 2 or β^3 hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ -opioid receptor. The NMR studies of β -deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: β^3 -homo-amino acids; β -peptides; α , β -hybrides of opioid peptides; opioid receptor binding; conformational studies

Introduction

Opioid peptides such as enkephalins [1], endomorphins [2], dermorphin [3] and deltorphins [4,5], have long acted as model compounds for the development of new analgesic drugs. A major problem with opioid peptides as drugs is their susceptibility to enzymatic hydrolysis when administrated in vivo. Several chemical approaches, such as the incorporation of Damino acids, unnatural amino acids, $\alpha_{,\alpha}$ -disubstituted amino acids, cyclic moieties or cyclization of peptides have resulted in obtaining more stable analogues [6-8]. Among the numerous strategies of modification, the substitution of proteinogenic amino acids with β -amino acids represents an interesting possibility. β -Peptides, oligomers of β -amino acids [9,10] are a very actual subject of research. The additional carbon atom in each amino acid residue of β -peptides leads to greater structural diversity. Due to the different dimension, geometries and polarities of the β -peptides, their biological properties differ from those of α -peptides in those cases, where exact fitting is mandatory. β -Peptides do not bind to the active sites of human peptidases and they are entirely stable against proteolytic degradation [11,12]; however, β -peptides can mimic α -peptides. It was demonstrated that small β -peptides with their strong folding preferences have shown pharmacological activity [13]. It shows that β -peptides built of homologated proteinogenic amino acids have great potential in medicinal chemistry [14].

We now report the results of our studies on replacement of α -amino acids with β^3 -homo-amino acids in the selected opioid peptides deltorphin 1 (DT 1), leu-enkephalin and dermorphin (DRM) (Scheme 1) and its effects on binding to δ - and μ -opioid receptors.

Materials and Methods

Reagents

Protected Boc- and Fmoc- α -amino acid derivatives were purchased from Fluka. AG (Bucks, Switzerland). The following side chain protected amino acids were used: Boc-Asp(OBzl), Boc-Tyr(OBzl) and FmocAsp(OtBu), Fmoc-Tyr(OtBu). *N*-protected β^3 *homo*-amino acids were synthesized using procedures reported in the literature. Optically pure Fmoc- and Boc- β^3 -*homo*-amino acids were prepared in two-step *Arndt-Eistert* homologation of commercially available, *N*-protected amino acids (Scheme 2) according to a general procedure [15,16].

Preparation of N-protected β^3 -homo-amino acids 10. General procedure

Synthesis of α -aminodiazo ketones 9. General procedure

The *N*-protected amino acid (10 mmol) was dissolved in anhydrous THF (25 ml) under argon. The solution was cooled to -25 °C, and triethylamine (1.4 ml, 10 mmol) and then ethyl chloroformate (1.3 ml, 10 mmol) were added through a rubber septum. After

- a Institute of Organic Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
- b Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 01-793 Warsaw, Poland
- c Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 01-793 Warsaw, Poland

^{*} Correspondence to: Aleksandra Olma, Institute of Organic Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland. E-mail: aleksandra.olma@p.lodz.pl

PG=Boc, Fmoo

15 min, the suspension was allowed to warm to 0 $^{\circ}$ C, the septum was replaced by a funnel and an ethereal solution of diazomethane was added until intensive yellow color persisted over a long period (1 h). The mixture was allowed to warm for 1 h without stirring. The excess of diazomethane was destroyed by addition of few drops of acetic acid and saturated aqueous solution sodium bicarbonate (10 ml) was added carefully. The aqueous layer was separated and the organic layer was washed with saturated aqueous sodium chloride (10 ml). The organic layer was dried over MgSO₄, filtered off and the solvent was evaporated. The crude product was used directly in the next step.

Homologation of α -aminodiazo ketones. General procedure

N-protected α -aminodiazo ketone was dissolved in ethyl acetate (6 ml per 100 mg of α -aminodiazo ketone). Silver benzoate (4% mol) and silica gel (1g per 100 mg α -amino diazo ketone) were

added, and the mixture (under the exclusion of light) was stirred for 30 min-2 h at 45 °C (the rotary evaporator was used in this step, the reaction was monitored by TLC). The silica gel was filtered off and washed with AcOEt. The ethyl acetate was evaporated to yield *N*-protected β^3 -homo-amino acids.

The yields and melting points of obtained *N*-protected β^3 homo-amino acids are shown in Table 1.

The β -peptides were synthesized by manual SPPS using standard techniques, for *N*-Boc-protected amino acids on 0.2 mM *p*-methylbenzhydrylamine (MBHA) resin × HCl (100–200 mesh, 1.05 mM/g, BACHEM, peptides **1-2**) or for *N*-Fmoc-protected amino acids on 0.2 mM Rink amide resin (100–200 mesh, 0.47 mM/g Novabiochem, peptides **3-7**). The C-terminal amino acid (3 equiv) was attached to the resin with TBTU (3 equiv) and HOBt (3 equiv) as coupling reagent in the presence of DIPEA (6 equiv) according to the usual protocol. Deprotection of *N*-Boc-protecting group was performed with 50% TFA in CH₂Cl₂. β -Peptides (Leu-ekephalin

Table 1.Yields andacids	d melting points of <i>N</i> -p	protected β^3 -homo-amino
N-protected β^3 -homo-amino	Yield (%)	Mp $^{\circ}$ C

R ³ homo amino				
acid	9	10	10	Lit.
Boc- β^3h -D-Ala	76	45	Oil	Oil [17]
Boc- $\beta^3 h$ Phe	93	99	104-107	96 [15]
Boc- $\beta^3 h$ Val	61	92	Oil	71–72 [18]
Boc- $\beta^3 h$ Leu	62	99	Oil	Oil [18]
Boc- $\beta^3 h$ Asp(OBzl)	96	93	96-99	-
Boc- $\beta^3 h$ Tyr(OBzl)	97	97	147-150	148–150 [19]
Fmoc- $\beta^3 h$ Ser(OtBu)	97	93	78-80	96-98 [20]
Fmoc- $\beta^3 h$ Tyr (OtBu)	96	66	105-110	120-121 [21]
Fmoc-β ³ hPro	78	50	175-177	191–192 [22]
Fmoc- $\beta^3 h$ -D-Ala	97	31	117-120	115–118 [22]
Fmoc-β ³ hPhe	96	56	145-150	157–158 [20]

Table 2.	Retention times,	purity a	nd molecular	ions of	β – peptides
and α , β -h	ybrides of DT I				

		HPLC		MS	
No	Peptide	t _R [min]	purity [%]	MW	[M+H] ⁺
1	β-DT I	15.34 ^a	99.9	866	867 ^d
2	β -DRM	12.08 ^b	98.0	900	901 ^d
3	β -Leu-ENK	5.11 ^a	98.0	624	625 ^d
4	$\beta^{3}h$ Tyr-D-Ala-Phe-Asp- Val-Val-GlyNH ₂	7.07 ^c	>99%	782.9	783.2 ^e
5	Tyr-β ³ h-D-Ala-Phe- Asp-Val-Val-GlyNH ₂	7.36 ^c	>99%	782.9	783.3 ^e
6	Tyr-D-Ala-β ³ hPhe-Asp- Val-Val-GlyNH ₂	7.06 ^c	>99%	782.9	783.2 ^e
7	$\beta^{3}h$ Tyr-D-Ala- $\beta^{3}h$ Phe- Asp-Val-Val-GlyNH ₂	7.15 ^c	>99%	796.93	797.6 ^e
Linear gradient ^a 30–60%B, 20–80%B; ^b 25–30%B, 25 min flow rate 1 ml/min: ^c 20–80%B. 25 min: ^d FAB-MS: ^e MALDI-MS.					

and deltorphin I analogues) were cleaved from the MBHA resin by the treatment with TFMSA in TFA for 2 h at room temperature (5 ml of TFA, 1.9 ml of TFMSA and 1 ml of anisole/g resin). For N-Fmoc-protecting group 20% piperidine in DMF was used. Analogues 3-7 were cleaved from Rink resin by treatment with TFA/H₂O/triisopropylsilane (TIS) (97.5:2.5:2.5 v: v: v). The crude peptides were purified by preparative reversed-phase HPLC on a Vydac C₁₈ column (25×2.2 cm) with linear gradient 30-60% B or 0-90% B at 16 ml/min (A = 0.05% trifluoroacetic acid in water and B = 0.38% trifluoroacetic acid in acetonitrile/H₂O 90 : 10). Each peptide was >98% pure as determined by analytical reversed-phase HPLC on Vydac C₁₈ column, 218 TP104) using linear gradient in 25 min at flow rate 1 ml/min, with UV detection at 220 nm (peptides 1-3) and on Supelco C_{18} column 25 cm \times 4.5 cm, with detection at 215 nm (peptides 4-7). Molecular weights of all synthetic analogues were confirmed by FAB-MS or MALDI-MS (Table 2).

NMR experiments

About 650 μ l NMR samples contained 0.015 mM peptide solutions in dmso-d₆ (Armar Chemicals, Döttingen, Switzerland). All spectra were measured on a VARIAN UNITY PLUS 500 MHz spectrometer

Table 3. Affinity data of β -peptides (1 – 3) and α , β -hybrides, analogues of DTI (4-6)				
	IC ₅₀ [nM]			
No	Peptides	$\delta^{\rm a}\pm{\rm SEM}$	$\mu\pm {\rm SEM}$	
	DT I [32]	0.6	2140 ^b	
1	β-DT I	640	$> 10000^{b}$	
	DRM [33]	192 ± 51	0.092 ± 0.024^{c}	
2	β -DRM	>10 000	$> 10000^{\circ}$	
	Leu-ENK [34]	1.43 ± 0.71	2.42 ± 0.93^{c}	
3	β -Leu-Enk	>10 000	$> 10000^{\circ}$	
4	β^3h Tyr-D-Ala-Phe-Asp- Val-Val-GlyNH ₂	416 ± 5.7	$> 10000^{b}$	
5	Tyr-β ³ h-D-Ala-Phe-Asp- Val-Val-GlyNH₂	12.3 ± 2.53	$> 10000^{b}$	
6	Tyr-D-Ala-β ³ hPhe-Asp- Val-Val-GlyNH ₂	10.47 ± 4.28	$> 10000^{b}$	
7	$\beta^{3}h$ Tyr-D-Ala- $\beta^{3}h$ Phe- Asp-Val-Val-GlyNH ₂	>10000	$> 10000^{b}$	
^a versus [³ H]-deltorphin II; ^b versus [³ H]-naloxone; ^c versus [³ H]-DAMGO.				

at magnetic field of 11.7 T and temperature 298 K. Temperature calibration was carefully performed using ethylene glycol chemical shift thermometer [23]. ¹H and ¹³C chemical shifts were reported with respect to the solvent signals: $\delta(^{1}H) = 2.54$ and $\delta(^{13}C) = 40.45$ [24]. Chemical shifts of ¹⁵N signals were referenced indirectly using the ratio of the zero-point frequencies, $f({}^{15}N)/f({}^{1}H) = 0.101329118$ [25]. Homonuclear 2D DQF-COSY [26], TOCSY [27] and ROESY [28] spectra were acquired with 8400 (t_2) \times 512 (t_1), 5400 (t_2) \times 256 (t_1) and 6000 $(t_2) \times 512 (t_1)$ complex data points, respectively, and the sweep widths of 6000 Hz using 32 scans. Mixing times for TOCSY and ROESY were 80 ms and 300 ms, respectively. ¹H/¹³C HSQC [29] spectrum was acquired with 3600 $(t_2) \times 128 (t_1)$ complex data points and the sweep widths of 5000 Hz in ¹H and 6000 Hz in ¹³C dimensions. Sixty-four scans were acquired for each increment. Corresponding parameters for ¹H/¹⁵N HSQC spectrum were: 2006 $(t_2) \times 96 (t_1)$ complex data points, sweep widths of 5000 Hz (¹H) and 5000 Hz (¹⁵N), 96 scans for each increment. The recycle delays in all spectra were equal to 1.4 s. Zero filling was performed prior to the Fourier transformation. Data were processed using the program nmrPipe [30] and analyzed with the program SPARKY [31].

Results and Discussion

Affinities of the β -peptides, analogues of enkephalin, dermorphin and deltorphin I for μ - and δ -receptors were determined in radioreceptor binding assay method described previously using radioligands [³H]-naloxone or [³H]-DAMGO for μ - and [³H]deltorphin II for δ -receptors specific ligands, respectively.

Table 3 shows the binding affinity of β -peptides analogues to δ and μ -opioid receptors in comparison with the respective parent peptide and affinity data of DT I α , β -hybrides containing single or double of β^3 -homo-amino acid residues. Replacing of each α -amino acid respective with β^3 -homo-amino acid in DRM and Leu-Enk dramatically reduces the affinity to μ and δ receptors, probably because the Tyr and Phe moieties are not in a favorable position or distance to accomplish the overlapping of the pharmacophore. The additional C^{β} -atom in the each amino acid caused a higher flexibility and a greater structural variability of peptide chain, which may result in adopting 'non-active' conformations. Surprisingly, β -DT I showed weak binding affinity at δ -opioid receptors.

Incorporation of $\beta^3 h$ -D-Ala in position 2 of DT I reduced affinity to δ -receptors only 20 times (peptide **5**). The distance between aromatic pharmacophores, which seems to be essential for opioid activity [35], should be the same as in analogue **4**. However, the replacement of Tyr¹ by $\beta^3 h$ Tyr (**4**) reduced δ affinity about 700fold. This may suggest importance of proper location of amide bond between amino acids in position 1 and 2.

Analogue containing $\beta^3 h$ Phe in position 3 (peptide **6**) is about 17-fold less potent in comparison with the DT I. In this case, the distance between two aromatic rings is the same as in the parent peptide. The presence of additional methylene group increased conformational flexibility of analogues, which in case analogues **5** and **6** is well tolerated by the δ -opioid receptor during the peptide ligand–receptor interaction.

The structure of β -DT I, the only β -homopeptide which shows weak binding affinity at δ -opioid receptors, was investigated by NMR spectroscopy.

Structural and conformational analysis of peptides in solution based on NMR techniques consists of several stages. Recognition of ¹H signals belonging to closed spin systems, i.e. to individual amino acid residues, is always the first stage of such analysis and can be best achieved with the aid of a number of two-dimensional measurements. Homonuclear techniques, COSY and TOCSY can be supplemented by such heteronuclear methods as ¹H/¹³C HSQC and ¹H/¹⁵N HSQC, which often allow us to remove some ambiguities in spectral assignments. Identification of structural constraints usually derived from the observation of NOE among ¹H nuclei being in close proximity is the subsequent stage of such analysis [36]. Owing to the typical correlation times of rotational diffusion for short peptides (ca. 0.5 ns) for which NOE is close to zero, this kind of experiments is performed in the rotating frame [37]. If the sufficient number of structural constraints is available for a rigid molecule, its 3D structure can be determined with a good precision. It is not, however, a usual case in studying peptides which display a high conformational mobility. Nevertheless, even sparse structural constraints can point out to the conformational preferences. It is the case of β -Deltorphin I (1), a peptide for which NMR study was carried out.

Almost full assignments of ¹H, ¹⁵N and proton bearing ¹³C nuclei in (1) was obtained from DQF-COSY, TOCSY, ¹H/¹³C HSQC and ¹H/¹⁵N HSQC spectra (Table 4).

Two-dimensional NOE in the rotating frame, ROESY spectrum, contained only 15 non-intraresidual cross peaks (Table 5).

Among 12 sequential NOEs, 6 are observed between H_α and subsequent H_N protons, H_α(i)/H_N(i+1), which are of medium or weak intensity and appear independently on the conformation of peptide backbone. The most informative are cross peaks including β^3hAsp^4 H_β and H_{β2} protons. Four of them, pointing out to the close vicinity to the amide proton and methyl protons in β^3hVal^5 , are the strongest among the non-intraresidual correlations. Together with correlations to H_β of β^3h -D-Ala² and H_γ of Val⁶ they suggest that conformational motions in the central part of β -DT I backbone are partially restricted and some conformational preferences can be expected. The results of our NMR studies confirm, that only β -peptides constructed from carefully chosen β -amino acids, more conformationally restricted (cyclic β -amino acids, β , β -disubstituted β -amino acids) can adopt different, stable secondary structures [38,39].

Nucleus Chemical shifts $\beta^3 h Tyr^1$	Table 4. Nucleus chemical shifts of β -Deltorphin I	
$\beta^3 h Tyr^1$ 7.944 H_N $n.a.$ H_w 3.579 C_a 50.32 H_μ $2.671; 2.866^n$ C_β 37.97^b H_{μ} 2.520° $C_{\beta2}$ 36.59^b H_β 7.021 C_s 116.2 $\beta^3 h-D-Ala^2$ H HN 0.811 H_μ 126 H_w 4.078 C_a 4.314 H_μ 0.979 C_{β} 20.52 $H_{\beta2}$ $21.81; 2.102$ $C_{\mu2}$ 42.81 $\beta^3 h Phe^3$ H_μ H_N 7.813 N_H 121.1 H_w 4.45 $C_{\beta2}$ 35.7^9 H_{β} $2.764; 2.649^a$ $C_{\mu2}$ 22.0^a $C_{\beta2}$ 35.7^9 H_{β} 7.188 C_s 12.67 H_{β} 7.184 C_s 12.67 <tr< th=""><th>Nucleus</th><th>Chemical shifts</th></tr<>	Nucleus	Chemical shifts
H_N 7.944 N_H n.a. H_a 3.579 C_a 50.32 H_β 2.671; 2.866° $C_{\beta2}$ 36.59° $H_{\beta2}$ 2.320° $C_{\beta2}$ 36.59° H_b 7.021 C_s 131.1 H_c 6.745 C_e 116.2 β^3h -D-Ala ² H H_N 8.081 N_H 126 H_a 4.078 C_e 115.2 β^3h -D-Ala ² 4.314 H_{β} 0.979 C_a 4.3.14 H_{β} 0.979 C_a 4.3.14 H_{β} 0.979 C_{β} 4.281 β^3h Phe ³ $ H_{\beta}$ 2.764; 2.649° C_{β} 39.94° $H_{\beta,2}$ 2.20° $C_{\beta,2}$ 35.7° H_{δ} 7.188 C_s 128.8 H_{z} 7.264	β ³ hTyr ¹	
N_{H} n.a. $H_{a'}$ 3.579 C_a 50.32 H_{β} 2.671; 2.866 ^a C_{β} 37.97 ^b $H_{\beta2}$ 2.320 ^a $C_{\mu2}$ 36.59 ^b H_{δ} 7.021 C_s 131.1 H_e 6.745 C_r 116.2 β^3h -D-Ala ² H H_N 8.081 N_H 126 H_a 4.078 C_a 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.81 β^3hphe^3 H H_{α} 4.249 C_a 48.5 $H_{\beta2}$ 2.20 ^a $C_{\beta2}$ 35.7 ^b H_{β} 7.164; 2.649 ^a C_{β} 128.8 $H_{\beta2}$ 7.264 C_s 128.8 H_{2} 7.174 C_{γ} 2.352 ^a H_{β} 7.263 </td <td>H_N</td> <td>7.944</td>	H _N	7.944
H_a 3.579 C_a 50.32 H_β 2.671; 2.866 ^a C_β 37.97 ^b $H_{\beta 2}$ 2.320 ^a $C_{\beta 2}$ 36.59 ^b H_δ 7.021 C_δ 131.1 H_{ε} 6.745 C_s 16.2 β^3h -D-Ala ² HN HN 8.081 NH 126 H_a 4.078 C_a 43.14 H_β 0.979 C_β 20.52 $H_{\beta 2}$ 2.181; 2.102 $C_{\beta 2}$ 2.81 $\beta^3 hPhe^3$ H HN 7.813 NH 121.1 H_a 4.249 C_a 48.5 H_β 2.764; 2.649 ^a C_β 39.94 ^b $H_{\beta 2}$ 2.220 ^a $C_{\beta 2}$ 35.7 ^b H_b 7.188 C_a 128.8 H_2 2.352 ^a H_b 7.83 <	N _H	n.a.
C_{α} 50.32 H_{β} 2.671; 2.866 ^a C_{β} 37.97 ^b $H_{\beta2}$ 2.320 ^a $C_{\beta2}$ 36.59 ^b H_8 7.021 C_{δ} 131.1 H_{κ} 6.745 C_{ε} 116.2 β^3h -D-Ala ² H H_N 8.081 H_4 4.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.81 β^3hphe^3 H H_{γ} 7.813 N_H 121.1 H_{α} 4.249 C_{α} 48.5 $H_{\beta2}$ 2.764; 2.649 ^a C_{β} 39.94 ^b $H_{\beta2}$ 2.220 ^a $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 $H_{\beta2}$ 2.220 ^a C_{β} 120.8 H_{γ} 2.352 ^a C_{β} <	H_{lpha}	3.579
H_{β} 2.671; 2.866 C_{β} 37.97b $H_{\beta2}$ 2.320° $C_{\beta2}$ 36.59b H_{δ} 7.021 C_{δ} 131.1 H_e 6.745 C_e 116.2 β^3h -D-Ala ² HN N_M 8.081 N_H 126 H_{v} 4.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.81 β^3h Phe ³ H H_{γ} 2.764; 2.649 ³ C_{α} 48.5 $H_{\beta2}$ 2.764; 2.649 ³ $C_{\beta2}$ 35.7b H_{δ} 7.188 C_{s} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_{z} 7.174 C_z 126.7 β^3hAsp^4 - H_{s} na $C_{\beta2}$ 38.93 ^b H_{β} 2	C_{lpha}	50.32
	H_{eta}	2.671; 2.866 ^a
$H_{\beta 2}$ 2.320^9 $C_{\beta 2}$ 36.59^5 H_8 7.021 C_8 131.1 H_e 6.745 C_e 116.2 β^3h -D-Ala ² HN HN 8.081 NH 126 H_{φ} 4.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta 2}$ $2.181; 2.102$ $C_{\beta 2}$ 42.81 $\beta^3 hPhe^3$ -42.81 H_{β} $2.764; 2.649^3$ C_{α} 48.5 H_{β} $2.764; 2.649^3$ C_{α} 48.5 H_{β} $2.764; 2.649^3$ C_{β} 39.94^b $H_{\beta 2}$ 2.220^3 $C_{\beta 2}$ 35.7^b H_{δ} 7.184 C_{z} 128.9 H_{β} 7.224 C_{z} 128.8 H_{z} 7.174 C_{z} 36.39^3 H_{β} <	C_eta	37.97 ^b
	$H_{\beta 2}$	2.320 ^a
H_s 7.021 C_s 131.1 H_e 6.745 C_e 116.2 β^3h -D-Ala ² 1 H_u 8.081 N_H 126 H_a 4.078 C_a 43.14 H_{β} 0.979 C_g 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 2.181; 2.102 C_{α} 4.281 $H_{\beta1}$ 2.210 ² C_a 48.5 $H_{\beta2}$ 2.26 ³ $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_s 128.8 H_z 7.174 C_z 126.7 $\beta^3 hAsp^4$ 120.8 H_{μ} 2.352 ^a C_{β} 40.63 ^b H_{β} 2.352 ^a C_{β} 40.63 ^b H_{β} <td>$C_{\beta 2}$</td> <td>36.59^b</td>	$C_{\beta 2}$	36.59 ^b
C_s 131.1 H_{ε} 6.745 C_s 116.2 β^3h -D-Ala ² 116.2 H_N 8.081 N_H 126 H_{α} 4.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 H_{2} 2.181; 2.102 C_{β^2} 42.81 β^3hphe^3 7.813 H_N 7.813 N_H 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} 2.764; 2.649 ³⁶ C_{β} 39.94 ^b $H_{\mu 2}$ 2.204 ³ C_{β} 35.7 ^b H_{δ} 7.188 C_{s} 128.8 H_{z} 7.264 C_{z} 126.7 β^3hAsp^4 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b H_{β} 0.33 $C_{\beta2}$ <td< td=""><td>H_{δ}</td><td>7.021</td></td<>	H_{δ}	7.021
H_e 6.745 C_e 116.2 β^3 h-D-Ala ² HN NH 126 H_a 4.078 C_a 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.81 β^3hPhe^3 H_N H_N 7.813 NH 121.1 H_a 4.249 C_a 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b H_{22} 2.220 ^a C_{β} 128.8 H_{β} 7.188 C_s 128.8 H_z 7.174 C_z 126.7 β^3hAsp^4 H_N H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a $C_{\beta,2}$ 38.93 ^b H_{δ} na β^3hVal^5 na	C_{δ}	131.1
C_e 116.2 β^3h -D-Ala ² 8.081 H_N 8.081 N_H 126 H_a 4.078 C_a 43.14 H_β 0.979 $C_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.81 β^3hPhe^3 42.81 H_N 7.813 N_H 121.1 H_a 4.249 C_a 48.5 H_{β} 2.764; 2.649 ^a C_{α} 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b H_{β_2} 2.220 ^a C_{β} 39.94 ^b H_{β_2} 2.220 ^a C_{β} 128.8 H_x 7.174 C_z 120.8 H_a 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 4.364 C_a 4.364 C_a 4.364 C_{α} 4.364 C_{β} 4.033	H _e	6.745
μ_N 8.081 N_H 126 H_{α} 4.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $C_{\beta2}$ 42.102 $C_{\beta2}$ 42.102 $C_{\beta2}$ 42.102 $C_{\beta2}$ 42.102 C_{α} 48.5 H_N 7.813 N_H 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} 2.764; 2.649 ³ $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_{2} 7.174 C_{z} 126.7 β^3hAsp^4 4.364 H_{α} 4.352 ³ C_{β} 40.63 ^b $H_{\beta,2}$ 2.450 ³ $C_{\beta,2}$ 38.93 ^b H_{δ} na β^3hVal^5 μ_{α} H_{α} 4.033 C_{α} 41.8.9 H_{β} 1.721 C_{β} 31.66 $H_{\beta,2}$ 2.181; 2.289 $C_{\beta,2}$ 38.94 C_{β} 38.94	C_{ε} $\beta^{3}h-D-A a^{2}$	116.2
NH 126 H_a 4.078 C_a 43.14 H_β 0.979 C_β 20.52 $H_{\beta 2}$ 2.181; 2.102 $C_{\beta 2}$ 42.81 $\beta^3 hPhe^3$ H_h H_N 7.813 NH 121.1 H_a 4.249 C_a 48.5 H_β 2.764; 2649 ^a $C_{\beta 2}$ 35.7 ^b $H_{\beta 3}$ 7.188 $C_{\beta 2}$ 35.7 ^b H_δ 7.264 C_{ε} 128.8 H_z 7.167 $C_3^3 hAsp^4$ H H_N 7.892 NH 120.8 $H_{\mu 2}$ 2.450 ^a $C_{\mu 2}$ 38.93 ^b $H_{\beta 3}$ 7.636 $H_{\beta 4}$ 18.9 $H_{\beta 4}$ 17.21 $C_{\beta 2}$ 31.66 $H_{\mu 4}$ 2.181; 2.289 $C_{\beta 2}$ 38.94		8 081
H_{α} 1.078 C_{α} 43.14 H_{β} 0.979 C_{β} 20.52 H_{22} 2.181; 2.102 $C_{\beta2}$ 42.81 $\beta^3 h Phe^3$ H_N H_N 7.813 H_H 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b H_{22} 2.220 ^a $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ε} 128.8 H_{z} 7.174 C_{z} 126.7 $\beta^3 h A sp^4$ H_N H_{α} 2.352 ^a C_{β} 40.63 ^b $H_{\beta2}$ 2.450 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{α} 4.033 C_{α} 41.89 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94		126
	 H _a	4.078
μ_{β} 0.979 ζ_{β} 20.52 $H_{\beta2}$ 2.181; 2.102 $\zeta_{\beta2}$ 42.81 $\beta^3 h Phe^3$	Čα	43.14
ζ_{β} 20.52 $H_{\beta 2}$ 2.181; 2.102 $\zeta_{\beta 2}$ 42.81 β^3hPhe^3 H_N H_N 7.813 N_H 121.1 H_{α} 4.249 ζ_{α} 48.5 H_{β} 2.764; 2.649 ^a ζ_{β} 39.94b ^b $H_{\beta 2}$ 2.220 ^a $\zeta_{\beta 2}$ 35.7 ^b H_{δ} 7.188 ζ_{δ} 129.9 H_{ϵ} 7.264 ζ_{ϵ} 128.8 H_z 7.174 ζ_z 126.7 β^3hAsp^4 4.364 C_{α} 44.42 H_{μ} 2.352 ^a ζ_{β} 40.63 ^b H_{β} na β^3hVal^5 N_H H_a 4.033 ζ_{α} 51.59 H_{β} 7.636 N_H 118.9 H_{α} 4.033 ζ_{α} 51.59 H_{β} 2.181; 2.289 ζ_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 ζ_{β} 38.94	H _β	0.979
$H_{\beta 2}$ $2.181; 2.102$ $C_{\beta 2}$ 42.81 $\beta^3 h Phe^3$ H_N H_N 7.813 N_H 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} $2.764; 2.649^a$ C_{β} 39.94^b $H_{\beta 2}$ 2.220^a $C_{\beta 2}$ 35.7^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_2 7.174 C_z 126.7 $\beta^3 h Asp^4$ H_N H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352^a $C_{\beta 2}$ 38.93^b H_{β} na $\beta^3 h Val^5$ H_A H_N 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 H_{22} $2.181; 2.289$ $C_{\beta 2}$ 38.94	C_{β}^{P}	20.52
$\zeta_{\beta2}$ 42.81 $\beta^3 h Phe^3$	$H_{\beta 2}$	2.181; 2.102
$\beta^3 h Phe^3$ H_N 7.813 N_H 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b $H_{\beta2}$ 2.220 ^a $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_Z 7.174 C_z 126.7 $\beta^3 h A sp^4$ 7.1892 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta,2}$ 2.450 ^a $C_{\beta,2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta,2}$ 2.181; 2.289 $C_{\beta,2}$ 38.94 <td>$C_{\beta 2}$</td> <td>42.81</td>	$C_{\beta 2}$	42.81
H_N 7.813 H_N 121.1 H_{α} 4.249 C_{α} 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b $H_{\beta2}$ 2.220 ^a $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_z 7.174 C_z 126.7 β^3hAsp^4 7.892 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na β^3hVal^5 na H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94 C 18.24	$\beta^3 h P h e^3$	
NH 121.1 μ_{α} 4.249 ζ_{α} 48.5 μ_{β} 2.764; 2.649 ^a ζ_{β} 39.94 ^b $\mu_{\beta 2}$ 2.220 ^a $\zeta_{\beta 2}$ 35.7 ^b H_{δ} 7.188 ζ_{δ} 129.9 H_{ϵ} 7.264 ζ_{ϵ} 128.8 H_z 7.174 ζ_z 126.7 $\beta^3 h A sp^4$ 4.364 ζ_{α} 44.42 H_{β} 2.352 ^a $\zeta_{\beta 2}$ 38.93 ^b H_{δ} 7.636 N_H 118.9 $H_{\beta 2}$ 2.450 ^a $\zeta_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{μ} 1.721 ζ_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $\zeta_{\beta 2}$ 38.94	HN	7.813
H_{α} 4.249 ζ_{α} 48.5 H_{β} 2.764; 2.649 ^a ζ_{β} 39.94 ^b $H_{\beta2}$ 2.220 ^a $\zeta_{\beta2}$ 35.7 ^b H_{δ} 7.188 ζ_{δ} 129.9 H_{ϵ} 7.264 ζ_{ϵ} 128.8 H_z 7.174 ζ_z 126.7 $\beta^3 h A sp^4$ 4.364 K_{α} 4.364 ζ_{α} 44.42 H_{β} 2.352 ^a $\zeta_{\beta}2$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{N} 7.636 N_{H} 118.9 H_{δ} 51.59 H_{β} 2.181; 2.289 ζ_{α} 31.66 $H_{\beta 2}$ 2.181; 2.289 $\zeta_{\beta}2$ 38.94	NH	121.1
C_{α} 48.5 H_{β} 2.764; 2.649 ^a C_{β} 39.94 ^b $H_{\beta2}$ 2.220 ^a $C_{\beta2}$ 35.7 ^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_2 7.174 C_z 126.7 $\beta^3 h A sp^4$ 4.364 H_N 7.892 NH 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta2}$ 2.450 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94	H_{α}	4.249
H_{β} $2.764; 2.649^{a}$ C_{β} 39.94^{b} $H_{\beta2}$ 2.220^{a} $C_{\beta2}$ 35.7^{b} H_{δ} 7.188 C_{δ} 129.9 H_{ε} 7.264 C_{ε} 128.8 H_{z} 7.174 C_{z} 126.7 $\beta^{3}hAsp^{4}$ H_{N} H_{N} 7.892 N_{H} 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352^{a} C_{β} 40.63^{b} $H_{\beta2}$ 2.450^{a} $C_{\beta2}$ 38.93^{b} H_{δ} na $\beta^{3}hVal^{5}$ ma H_{N} 7.636 N_{H} 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ $2.181; 2.289$ $C_{\beta2}$ 38.94	C _α	48.5
C_{β} 39.94^b $H_{\beta 2}$ 2.220^a $C_{\beta 2}$ 35.7^b H_{δ} 7.188 C_{δ} 129.9 H_{ϵ} 7.264 C_{ϵ} 128.8 H_z 7.174 C_z 126.7 $\beta^3 h A sp^4$ H_N H_N 7.892 H_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352^a C_{β} 40.63^b $H_{\beta 2}$ 2.450^a $C_{\beta 2}$ 38.93^b H_{δ} na $\beta^3 h Val^5$ H_N H_N 7.636 H_{μ} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ $2.181; 2.289$ $C_{\beta 2}$ 38.92	H_{eta}	2.764; 2.649 ^a
$H_{\beta 2}$ 2.20^a $C_{\beta 2}$ 35.7^b H_δ 7.188 C_s 129.9 H_c 7.264 C_e 128.8 H_z 7.174 C_z 126.7 β^3hAsp^4 H_N H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352^a C_{β} 40.63^b $H_{\beta 2}$ 2.450^a $C_{\beta 2}$ 38.93^b H_{δ} na β^3hVal^5 na H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ $2.181; 2.289$ $C_{\beta 2}$ 38.94	C_{β}	39.94 ^b
$C_{\beta 2}$ 35.7^b H_{δ} 7.188 C_{δ} 129.9 H_{ε} 7.264 C_{ε} 128.8 H_z 7.174 C_z 126.7 $\beta^3 h A sp^4$ H_N H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352^a C_{β} 40.63^b $H_{\beta 2}$ 2.450^a $C_{\beta 2}$ 38.93^b H_{δ} na $\beta^3 h Val^5$ na H_{μ} 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	$H_{\beta 2}$	2.220 ^a
H_{β} 7.188 C_{δ} 129.9 H_{ε} 7.264 C_{ε} 128.8 H_z 7.174 C_z 126.7 $\beta^3 h A s p^4$ 7.892 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	$C_{\beta 2}$	35.7 ^b
C_{δ} 129.9 H_{ε} 7.264 C_{ε} 128.8 H_z 7.174 C_z 126.7 $\beta^3 h A s p^4$ H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ H_N 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	H_{δ}	7.188
H_{ε} 7.264 C_{ε} 128.8 H_z 7.174 C_z 126.7 $\beta^3 h A sp^4$ H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{χ} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	C_δ	129.9
C_e 128.8 H_z 7.174 C_z 126.7 $\beta^3 h Asp^4$ 120.8 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	H _e	7.264
H_z 7.174 C_z 126.7 $\beta^3 h Asp^4$ 120.8 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ na H_{μ} 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	C_{ε}	128.8
C_z 126.7 $\beta^3 h Asp^4$ 7.892 H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	Hz	/.1/4
$\beta^{5}hAsp^{*}$ H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta2}$ 2.450 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na $\beta^{3}hVal^{5}$ 7.636 H_N 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94		120.7
H_N 7.892 N_H 120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ H_N H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	β ^s hAsp ⁴	7 000
NH120.8 H_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta2}$ 2.450 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94 C_{β} 31.66	n _N	/.892
Γ_{α} 4.364 C_{α} 44.42 H_{β} 2.352 ^a C_{β} 40.63 ^b $H_{\beta2}$ 2.450 ^a $C_{\beta2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94		120.8 1 364
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	C_{α}	4.504 AA A7
$\begin{array}{c} \Gamma_{\beta} & \Gamma_{\beta} &$	$-\alpha$	2.352 ^a
$H_{\beta 2}$ 2.450 ^a $C_{\beta 2}$ 38.93 ^b H_{δ} na $\beta^3 h Val^5$ 7.636 H_N 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	C_{β}	40.63 ^b
$C_{\beta 2}$ 38.93^b H_δ na $\beta^3 h Val^5$ 7.636 H_N 7.636 N_H 118.9 H_α 4.033 C_α 51.59 H_β 1.721 C_β 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94	$H_{\beta 2}$	2.450 ^a
H_{δ} na $\beta^3 h Val^5$ 7.636 H_N 7.636 N_H 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94	$C_{\beta 2}$	38.93 ^b
$\begin{array}{c c} & & & & & & & & \\ \beta^3 h V a l^5 \\ H_N & & & & & & \\ N_H & & & & & 118.9 \\ H_\alpha & & & & & 4.033 \\ C_\alpha & & & & & 51.59 \\ H_\beta & & & & & 1.721 \\ C_\beta & & & & & 31.66 \\ H_{\beta 2} & & & & & 2.181; 2.289 \\ C_{\beta 2} & & & & & 38.94 \\ C_{\beta 2} & & & & & 19.74 \end{array}$	H_{δ}	na
$\begin{array}{ccc} {\sf H}_{\sf N} & & 7.636 \\ {\sf N}_{\sf H} & & 118.9 \\ {\sf H}_{\alpha} & & 4.033 \\ {\sf C}_{\alpha} & & 51.59 \\ {\sf H}_{\beta} & & 1.721 \\ {\sf C}_{\beta} & & 31.66 \\ {\sf H}_{\beta2} & & 2.181; 2.289 \\ {\sf C}_{\beta2} & & 38.94 \\ {\sf C} & & 19.24 \end{array}$	$\beta^3 h Val^5$	
$N_{\rm H}$ 118.9 H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94 C 19.24	H _N	7.636
H_{α} 4.033 C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94 C 19.24	N _H	118.9
C_{α} 51.59 H_{β} 1.721 C_{β} 31.66 $H_{\beta2}$ 2.181; 2.289 $C_{\beta2}$ 38.94 C 19.74	H _α	4.033
$π_β$ 1./21 $C_β$ 31.66 $H_{β2}$ 2.181; 2.289 $C_{β2}$ 38.94 C 19.24	C_{α}	51.59
C_{β} 31.66 $H_{\beta 2}$ 2.181; 2.289 $C_{\beta 2}$ 38.94 $C_{\beta 2}$ 19.24	Π_{β}	1./21
$C_{\beta 2}$ 2.101; 2.289 $C_{\beta 2}$ 38.94 $C_{\beta 2}$ 19.24	C_{β}	00.1 C 00C C 121 C
C 50.94		2.101, 2.209
1 × 4/1	C _{β2}	18 34

Tuble 4.	(continued)
Nucleus	Chemical shifts
$H_{\gamma 1}$	0.837
C _{γ2}	18.34
$H_{\gamma 2}$	0.837
$\beta^{3}hVal^{6}$	
H _N	7.577
N _H	118.6
H_{α}	3.995
C _α	51.52
H_{β}	1.708
C_{β}	31.36
$H_{\beta 2}$	2.123; 2.239
$C_{\beta 2}$	38.76
$H_{\gamma 1}$	0.817
$C_{\gamma 1}$	19.93
$H_{\gamma 2}$	0.817
C _{y2}	19.93
βAla^7	
H _N	7.869
N _H	110.6
H_{α}	3.244
C_{α}	35.91
H_{β}	2.231
C_{β}	41.1
H _{N2}	6.842; 7.370
N _H	101.7
n.a. – not	assigned; ^a , ^b – assignments can be interchanged.

Table 5. Type of c	ross peaks	
Type of cross peak	Interacting nuclei	Relative intensity
i/i+1	$\beta^3 h$ Tyr ¹ -H $_{\alpha}/\beta^3 h$ -D-Ala ² -H _N	1.6
i/i+1	$\beta^{3}h$ -D-Ala ² -H _{α} / $\beta^{3}h$ Phe ³ -H _N	7.5
i/i+1	$\beta^{3}h$ -D-Ala ² -H $_{\beta}/\beta^{3}h$ Phe ³ -H _N	4.8
i/i+1	$\beta^3 h$ Phe ³ -H $_{lpha}/\beta^3 h$ Asp ⁴ -H _N	5.9
i/i+1	$\beta^3 h Asp^4$ -H $_{\beta}/\beta^3 h Val^5$ -H $_N$	6.0
i/i+1	$\beta^3 h \text{Asp}^4 - \text{H}_{\beta} / \beta^3 h \text{Val}^5 - \text{H}_{N}$	33.2
i/i+1	$\beta^3 h \text{Asp}^4 - \text{H}_{\beta 2} / \beta^3 h \text{Val}^5 - \text{H}_{\text{N}}$	9.5
i/i+1	$\beta^3 h Asp^4$ -H $_{\beta}/\beta^3 h Val^5$ -H $_{\gamma 1\gamma 2}$	17.5
i/i+1	$\beta^{3}hAsp^{4}-H_{\beta 2}/\beta^{3}hVal^{5}-H_{\gamma 1\gamma 2}$	12.0
i/i+1	$\beta^{3}h$ Val ⁵ -H _{α} / $\beta^{3}h$ Val ⁶ -H _N	1.1
i/i+1	$\beta^3 h$ Val ⁶ -H $_{\alpha}/\beta$ Ala ⁷ -H _N	5.9
i/i+1	$\beta^3 h Val^6$ -H $_{\gamma 1 \gamma 2} / \beta Ala^7$ -H _N	4.2
i/i+2	$\beta^{3}h$ -D-Ala ² -H $_{\beta}/\beta^{3}h$ Asp ⁴ -H $_{\beta}$	5.1
i/i+2	$\beta^{3}h$ -D-Ala ² -H _{β} / $\beta^{3}h$ Asp ⁴ -H _{β2}	2.9
i/i+2	$\beta^{3}hAsp^{4}-H_{\alpha}/\beta^{3}hVal^{6}-H_{\gamma1\gamma2}$	3.5

Acknowledgements

The authors thank Prof. A. W. Lipkowski from Medical Research Centre, Polish Academy of Sciences, for intellectual contributions and helpful discussion. A.O. would like to thank Dr Jordan Zjawiony from the University of Mississippi, USA for a critical reading of this article.

References

- Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morrris HR. Identification of two related pentapeptides from brain with potent opiate agonist activity. *Nature* 1975; 258: 577–579.
- 2 Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the μ-opiate receptor. *Nature* 1997; **386**: 499–502.
- 3 Montecucchi PC, De Castiglione R, Piani S, Gozzini L, Esrspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin extracts of Phyllomedusa sauvagei. *Int. J. Pept. Protein Res.* 1981; **17**: 275.
- 4 Erspamer V. The opioid peptides of the amphibian skin. Int. J. Dev. Neurosci. 1992; 10: 3–30.
- 5 Lazarus LH, Attila M. The toad ugly and venomous, wears yet a precious jewel in his skin. *Prog. Neurobiol.* 1993; **41**: 473–507.
- 6 Sagan S, Karoyan P, Lequin O, Chassaing G, Lavielle S. N- and C^αmethylation in biologically active peptides: synthesis, structural and functional aspects. *Curr. Med. Chem.* 2004; **11**: 2799–2822.
- 7 Zieleniak A, Rodziewicz-Motowido A, Rusak L, Chung NN, Czaplewski C, Witkowska E, Schiller PW, Ciarkowski J, Izdebski J. Deltorphin analogs restricted *via* a urea bridge: structure and opioid activity. *J. Pept. Sci.* 2008; **14**: 830–837.
- 8 Koda Y, Del Borgo M, Wessling ST, Lazarus LH, Okada Y, Toth I, Blanchfield JT. Synthesis and *in vitro* evaluation of a library of modified endomorphin-1 peptides. *Bioorg. Med. Chem.* 2008; 16: 6286–6296.
- 9 Kimmerlin T, Sebesta R, Campo MA, Beck AK, Seebach D. How we drifted into peptide chemistry and where we have arrived at. *Tetrahedron* 2004; **60**: 7455–7506.
- 10 Seebach D, Gardiner J. β -Peptidic peptidomimetics. Acc. Chem. Res. 2008; **41**: 1360–1375.
- 11 Geueke B, Namoto K, Seebach D, Peter H, Kohler EA. Novel β -peptidyl aminopeptidase (BapA) from strain 3-2w4 cleaves peptide bonds of synthetic β -tri- and β -dipeptides. *J. Bacteriol.* 2005; **187**: 5910–5917.
- 12 Gademann K, Kimmerlin T, Hoyer D, Seebach D. Peptide folding induces high and selective affinity of a linear and small β -peptide to the human somatostatin receptor 4. J. Med. Chem. 2001; **44**: 2460–2468.
- 13 Wilczynska D, Olma A, Kosson P, Lipkowski AW. Conformational and methabolic consquences of substitution of phenylalanine with β^3 -homophenylalanine In *Peptides 2006, Proceedings of the 29th European Peptide Symposium*, Rolka K, Rekowski P, Silbering J (eds). Kenes 2007; 364–365.
- 14 Aguilar MI, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. β -Amino acid-containing hybrid peptides -new opportunities in peptidomimetics. *Org. Biomol. Chem.* 2007; **5**: 2884–2890.
- 15 Linder MR, Steurer S, Podlech J. (S)-3-(tert-butyloxycarbonylamino)-4-phenylbutanoic acid. Organic Syntheses, Coll. 2002; 79: 154–159.
- 16 Koch K, Podlech J. Exceptionally simple homologation of protected α and β -amino acids in the presence of silica gel. *Synth. Commun.* 2005; **35**: 2789–2794.
- 17 Ananda K, Gopi HN, Suresh Babu VV. Convenient synthesis of Boc-/Z-/Fmoc-β-amino acids employing *N*-protected α-amino acid fluorides. *J. Pept. Res.* 2000; **55**: 289–294.
- 18 Seebach D, Overhand M, Kuhnle FNM; Martinoni B. β -Peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by x-ray crystallography. Helical secondary structure of β hexapeptide in solution and its stability towards Pepsin. *Helv. Chim. Acta.* 1996; **79**: 913–943.
- 19 Łankiewicz L, Glanz D, Grzonka Z, Slaninova T, Fahrenholz F. Synthesis and biological activity of oxytocin analogues with β -amino acids in position 2. *Bull. Pol. Acad. Sci. Chem.* 1989; **37**: 45–51.
- 20 Guichard G, Abele S, Seebach D. Preparation of *N*-Fmoc-Protected β^2 and β^3 -amino acids and their use as building blocks for the solid-phase synthesis of β -peptides. *Helv. Chim. Acta.* 1998; **81**: 187–206.
- 21 Abele S, Guichard G, Seebach D. (5)- β^3 -homolysine- and (5)- β^3 -homoserine-containing β -peptides: Cd spectra in aqueous solution. *Helv. Chim. Acta.* 1998; **81**: 2141–2156.
- 22 Ellmerer-Müller EP, Brössner D, Maslouh N, Takó A. Synthesis of N-[(9H-Fluoren-9-yl)methoxy]carbonyl-Protected (Fmoc) β -Amino

Acids (= homo- α -amino acids) by direct homologation. *Helv. Chim.* Acta. 1998; **81**: 59.

23 Railford DS, Fisk CL, Becker ED. Calibration of methanol and ethylene glycol nuclear magnetic resonance thermomethers. *Anal. Chem.* 1979; **51**: 2050–2051.

Journal of

PeptideScience

- 24 Gottlieb HE, Kotlyar V, Nudelman A. NMR chemicals shift of common laboratory solvents as trace impurities. J. Org. Chem. 1997; **62**: 7512–7515.
- 25 Wishart DS, Bigman CG, Yao J, Abildgaad F, Dyson HJ, Oldfield FE, Markley JL, Sykes BD. 1H, 13C and 14N chemical shifts referencing in biomolecular NMR. J. Biomol. NMR. 1995; 6: 135–140.
- 26 Rance M, Sorensen OW, Bodenhausen G, Wagner G, Ernst RR, Wurtrich K. Improved spectral resolution in COSY ¹H NMR spectra of proteins *via* double quantum filtering. *Biochem. Biophys. Res.Commun.* 1983; **117**: 479–485.
- 27 Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing:application to proton correlation spectroscopy. J. Magn. Reson. 1983; 53: 521–528.
- 28 Bother-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984; 106: 811–813.
- 29 Bodenhausen G, Ruben DJ. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy *Chem. Phys. Lett.* 1980; 69: 185–189.
- 30 Delagio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. A multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR.* 1995; **6**: 277–293.

- 31 Goddard TD, Kneller DG. *SPARKY 3*, University of California, San Francisco.
- 32 Misicka A, Cavagnero S, Horvarth R, Davis P, Porreca F, Yamamura HI, Hruby VJ. Synthesis and biological properties of β -MePhe³ analogues of deltorphin I and dermenkephalin: influence of biosed χ 1 of Phe³ residues on peptide recognition for δ -opioid receptors. J. Pept. Res. 1997; **50**: 48–54.
- 33 Ambo A, Murase H, Niizuma H, Ouchi H, Yamamato Y, Sasaki Y. Dermorphin and deltorphin heptapeptide analogues: replacement of Phe residue by Dmp greatly improves opioid receptor affinity and selectivity. *Bioorg. Med. Chem. Lett.* 2002; **12**: 879–881.
- 34 Sasaki Y, Suto T, Ambo A, Oucni H, Yamamoto Y. Biological properties of opioid peptides replacing Tyr at position 1 by 2,6dimethyl-Tyr. *Chem. Pharm. Bull.* 1999; 47: 1506–1509.
- 35 Hruby VJ, Gehrig CA. Recent developments in the design of receptor specific opioid peptides. *Med. Res. Rev.* 1989; **9**: 343–401.
- 36 Kessler H, Seip S. NMR of peptides. In *Two-dimensional NMR Spectroscopy*, Croasmun WR, Carlson RMK (eds). VCH Publishers: New York, 1994.
- 37 Neuhaus D, Williamson MP. The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH: New York, 1989.
- 38 Appela DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ Jr, Gellman SH. Residue-based control of helix shape in β -peptide oligomers. *Nature* 1997; **387**: 381–384.
- 39 Miller CA, Gellman SH, Abbot NL, Pablo JJ. Mechanical stability of helical β-peptides and comparision of explicit and implicit solvent models. *Biophys. J.* 2008; **95**: 3123–3136.